\( \newcommand{\cO}{\mathcal{O}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cM}{\mathcal{M}} \newcommand{\GG}{\mathbb{G}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\NN}{\mathbb{N}} \newcommand{\PP}{\mathbb{P}} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\RR}{\mathbb{R}} \newcommand{\LL}{\mathbb{L}} \newcommand{\HH}{\mathbb{H}} \newcommand{\EE}{\mathbb{E}} \newcommand{\SP}{\mathbb{S}} \newcommand{\CC}{\mathbb{C}} \newcommand{\FF}{\mathbb{F}} \renewcommand{\AA}{\mathbb{A}} \newcommand{\sF}{\mathscr{F}} \newcommand{\sC}{\mathscr{C}} \newcommand{\ts}{\textsuperscript} \newcommand{\mf}{\mathfrak} \newcommand{\cc}{\mf{c}} \newcommand{\mg}{\mf{g}} \newcommand{\ma}{\mf{a}} \newcommand{\mh}{\mf{h}} \newcommand{\mn}{\mf{n}} \newcommand{\mc}{\mf{c}} \newcommand{\ul}{\underline} \newcommand{\mz}{\mf{z}} \newcommand{\me}{\mf{e}} \newcommand{\mff}{\mf{f}} \newcommand{\mm}{\mf{m}} \newcommand{\mt}{\mf{t}} \newcommand{\pp}{\mf{p}} \newcommand{\qq}{\mf{q}} \newcommand{\gl}{\mf{gl}} \newcommand{\msl}{\mf{sl}} \newcommand{\so}{\mf{so}} \newcommand{\mfu}{\mf{u}} \newcommand{\su}{\mf{su}} \newcommand{\msp}{\mf{sp}} \renewcommand{\aa}{\mf{a}} \newcommand{\bb}{\mf{b}} \newcommand{\sR}{\mathscr{R}} \newcommand{\lb}{\langle} \newcommand{\rb}{\rangle} \newcommand{\ff}{\mf{f}} \newcommand{\ee}{\epsilon} \newcommand{\heart}{\heartsuit} \newcommand{\floor}[1]{\lfloor #1 \rfloor} \newcommand{\ceil}[1]{\lceil #1 \rceil} \newcommand{\pushout}{\arrow[ul, phantom, "\ulcorner", very near start]} \newcommand{\pullback}{\arrow[dr, phantom, "\lrcorner", very near start]} \newcommand{\simp}[1]{#1^{\Delta^{op}}} \newcommand{\arrowtcupp}[2]{\arrow[bend left=50, ""{name=U, below,inner sep=1}]{#1}\arrow[Rightarrow,from=U,to=MU,"#2"]} \newcommand{\arrowtclow}[2]{\arrow[bend right=50, ""{name=L,inner sep=1}]{#1}\arrow[Rightarrow,from=LM,to=L]{}[]{#2}} % if you want to change some parameter of the label. \newcommand{\arrowtcmid}[2]{\arrow[""{name=MU,inner sep=1},""{name=LM,below,inner sep=1}]{#1}[pos=.1]{#2}} \newcommand{\dummy}{\textcolor{white}{\bullet}} %for adjunction \newcommand{\adjunction}[4]{ #1\hspace{2pt}\colon #2 \leftrightharpoons #3 \hspace{2pt}\colon #4 } %Math operators \newcommand{\aug}{\mathop{\rm aug}\nolimits} \newcommand{\MC}{\mathop{\rm MC}\nolimits} \newcommand{\art}{\mathop{\rm art}\nolimits} \newcommand{\DiGrph}{\mathop{\rm DiGrph}\nolimits} \newcommand{\FMP}{\mathop{\rm FMP}\nolimits} \newcommand{\CAlg}{\mathop{\rm CAlg}\nolimits} \newcommand{\perf}{\mathop{\rm perf}\nolimits} \newcommand{\cof}{\mathop{\rm cof}\nolimits} \newcommand{\fib}{\mathop{\rm fib}\nolimits} \newcommand{\Thick}{\mathop{\rm Thick}\nolimits} \newcommand{\Orb}{\mathop{\rm Orb}\nolimits} \newcommand{\ko}{\mathop{\rm ko}\nolimits} \newcommand{\Spf}{\mathop{\rm Spf}\nolimits} \newcommand{\Spc}{\mathop{\rm Spc}\nolimits} \newcommand{\sk}{\mathop{\rm sk}\nolimits} \newcommand{\cosk}{\mathop{\rm cosk}\nolimits} \newcommand{\holim}{\mathop{\rm holim}\nolimits} \newcommand{\hocolim}{\mathop{\rm hocolim}\nolimits} \newcommand{\Pre}{\mathop{\rm Pre}\nolimits} \newcommand{\THR}{\mathop{\rm THR}\nolimits} \newcommand{\THH}{\mathop{\rm THH}\nolimits} \newcommand{\Fun}{\mathop{\rm Fun}\nolimits} \newcommand{\Loc}{\mathop{\rm Loc}\nolimits} \newcommand{\Bord}{\mathop{\rm Bord}\nolimits} \newcommand{\Cob}{\mathop{\rm Cob}\nolimits} \newcommand{\Set}{\mathop{\rm Set}\nolimits} \newcommand{\Ind}{\mathop{\rm Ind}\nolimits} \newcommand{\Sind}{\mathop{\rm Sind}\nolimits} \newcommand{\Ext}{\mathop{\rm Ext}\nolimits} \newcommand{\sd}{\mathop{\rm sd}\nolimits} \newcommand{\Ex}{\mathop{\rm Ex}\nolimits} \newcommand{\Out}{\mathop{\rm Out}\nolimits} \newcommand{\Cyl}{\mathop{\rm Cyl}\nolimits} \newcommand{\Path}{\mathop{\rm Path}\nolimits} \newcommand{\Ch}{\mathop{\rm Ch}\nolimits} \newcommand{\SSet}{\mathop{\rm \Set^{\Delta^{op}}}\nolimits} \newcommand{\Sq}{\mathop{\rm Sq}\nolimits} \newcommand{\Free}{\mathop{\rm Free}\nolimits} \newcommand{\Map}{\mathop{\rm Map}\nolimits} \newcommand{\Chain}{\mathop{\rm Ch}\nolimits} \newcommand{\LMap}{\mathop{\rm LMap}\nolimits} \newcommand{\RMap}{\mathop{\rm RMap}\nolimits} \newcommand{\Tot}{\mathop{\rm Tot}\nolimits} \newcommand{\MU}{\mathop{\rm MU}\nolimits} \newcommand{\MSU}{\mathop{\rm MSU}\nolimits} \newcommand{\MSp}{\mathop{\rm MSp}\nolimits} \newcommand{\MSO}{\mathop{\rm MSO}\nolimits} \newcommand{\MO}{\mathop{\rm MO}\nolimits} \newcommand{\BU}{\mathop{\rm BU}\nolimits} \newcommand{\BSU}{\mathop{\rm BSU}\nolimits} \newcommand{\BSp}{\mathop{\rm BSp}\nolimits} \newcommand{\BGL}{\mathop{\rm BGL}\nolimits} \newcommand{\BSO}{\mathop{\rm BSO}\nolimits} \newcommand{\BO}{\mathop{\rm BO}\nolimits} \newcommand{\Tor}{\mathop{\rm Tor}\nolimits} \newcommand{\Cotor}{\mathop{\rm Cotor}\nolimits} \newcommand{\imag}{\mathop{\rm Im}\nolimits} \newcommand{\real}{\mathop{\rm Re}\nolimits} \newcommand{\Cat}{\mathop{\rm Cat}\nolimits} \newcommand{\Fld}{\mathop{\rm Fld}\nolimits} \newcommand{\Frac}{\mathop{\rm Frac}\nolimits} \newcommand{\Dom}{\mathop{\rm Dom}\nolimits} \newcommand{\Hotc}{\mathop{\rm Hotc}\nolimits} \newcommand{\Top}{\mathop{\rm Top}\nolimits} \newcommand{\Ring}{\mathop{\rm Ring}\nolimits} \newcommand{\CRing}{\mathop{\rm CRing}\nolimits} \newcommand{\CGHaus}{\mathop{\rm CGHaus}\nolimits} \newcommand{\Alg}{\mathop{\rm Alg}\nolimits} \newcommand{\Bool}{\mathop{\rm Bool}\nolimits} \newcommand{\hTop}{\mathop{\rm hTop}\nolimits} \newcommand{\Nat}{\mathop{\rm Nat}\nolimits} \newcommand{\Rel}{\mathop{\rm Rel}\nolimits} \newcommand{\Mod}{\mathop{\rm Mod}\nolimits} \newcommand{\Space}{\mathop{\rm Space}\nolimits} \newcommand{\Vect}{\mathop{\rm Vect}\nolimits} \newcommand{\FinVect}{\mathop{\rm FinVect}\nolimits} \newcommand{\Matr}{\mathop{\rm Matr}\nolimits} \newcommand{\Ab}{\mathop{\rm Ab}\nolimits} \newcommand{\Gr}{\mathop{\rm Gr}\nolimits} \newcommand{\Grp}{\mathop{\rm Grp}\nolimits} \newcommand{\Hol}{\mathop{\rm Hol}\nolimits} \newcommand{\Gpd}{\mathop{\rm Gpd}\nolimits} \newcommand{\Grpd}{\mathop{\rm Gpd}\nolimits} \newcommand{\Mon}{\mathop{\rm Mon}\nolimits} \newcommand{\FinSet}{\mathop{\rm FinSet}\nolimits} \newcommand{\Sch}{\mathop{\rm Sch}\nolimits} \newcommand{\AffSch}{\mathop{\rm AffSch}\nolimits} \newcommand{\Idem}{\mathop{\rm Idem}\nolimits} \newcommand{\SIdem}{\mathop{\rm SIdem}\nolimits} \newcommand{\Aut}{\mathop{\rm Aut}\nolimits} \newcommand{\Ord}{\mathop{\rm Ord}\nolimits} \newcommand{\coker}{\mathop{\rm coker}\nolimits} \newcommand{\ch}{\mathop{\rm char}\nolimits}%characteristic \newcommand{\Sym}{\mathop{\rm Sym}\nolimits} \newcommand{\adj}{\mathop{\rm adj}\nolimits} \newcommand{\dil}{\mathop{\rm dil}\nolimits} \newcommand{\Cl}{\mathop{\rm Cl}\nolimits} \newcommand{\Diff}{\mathop{\rm Diff}\nolimits} \newcommand{\End}{\mathop{\rm End}\nolimits} \newcommand{\Hom}{\mathop{\rm Hom}\nolimits}% preferred \newcommand{\Gal}{\mathop{\rm Gal}\nolimits} \newcommand{\Pos}{\mathop{\rm Pos}\nolimits} \newcommand{\Ad}{\mathop{\rm Ad}\nolimits} \newcommand{\GL}{\mathop{\rm GL}\nolimits} \newcommand{\SL}{\mathop{\rm SL}\nolimits} \newcommand{\vol}{\mathop{\rm vol}\nolimits} \newcommand{\reg}{\mathop{\rm reg}\nolimits} \newcommand{\Or}{\text{O}} \newcommand{\U}{\mathop{\rm U}\nolimits} \newcommand{\SOr}{\mathop{\rm SO}\nolimits} \newcommand{\SU}{\mathop{\rm SU}\nolimits} \newcommand{\Spin}{\mathop{\rm Spin}\nolimits} \newcommand{\Sp}{\mathop{\rm Sp}\nolimits} \newcommand{\Int}{\mathop{\rm Int}\nolimits} \newcommand{\im}{\mathop{\rm im}\nolimits} \newcommand{\dom}{\mathop{\rm dom}\nolimits} \newcommand{\di}{\mathop{\rm div}\nolimits} \newcommand{\cod}{\mathop{\rm cod}\nolimits} \newcommand{\colim}{\mathop{\rm colim}\nolimits} \newcommand{\ad}{\mathop{\rm ad}\nolimits} \newcommand{\PSL}{\mathop{\rm PSL}\nolimits} \newcommand{\PGL}{\mathop{\rm PGL}\nolimits} \newcommand{\sep}{\mathop{\rm sep}\nolimits} \newcommand{\MCG}{\mathop{\rm MCG}\nolimits} \newcommand{\oMCG}{\mathop{\rm MCG^+}\nolimits} \newcommand{\Spec}{\mathop{\rm Spec}\nolimits} \newcommand{\rank}{\mathop{\rm rank}\nolimits} \newcommand{\diverg}{\mathop{\rm div}\nolimits}%Divergence \newcommand{\disc}{\mathop{\rm disc}\nolimits} \newcommand{\sign}{\mathop{\rm sign}\nolimits} \newcommand{\Arf}{\mathop{\rm Arf}\nolimits} \newcommand{\Pic}{\mathop{\rm Pic}\nolimits} \newcommand{\Tr}{\mathop{\rm Tr}\nolimits} \newcommand{\res}{\mathop{\rm res}\nolimits} \newcommand{\Proj}{\mathop{\rm Proj}\nolimits} \newcommand{\mult}{\mathop{\rm mult}\nolimits} \newcommand{\N}{\mathop{\rm N}\nolimits} \newcommand{\lk}{\mathop{\rm lk}\nolimits} \newcommand{\Pf}{\mathop{\rm Pf}\nolimits} \newcommand{\sgn}{\mathop{\rm sgn}\nolimits} \newcommand{\grad}{\mathop{\rm grad}\nolimits} \newcommand{\lcm}{\mathop{\rm lcm}\nolimits} \newcommand{\Ric}{\mathop{\rm Ric}\nolimits} \newcommand{\Hess}{\mathop{\rm Hess}\nolimits} \newcommand{\sn}{\mathop{\rm sn}\nolimits} \newcommand{\cut}{\mathop{\rm cut}\nolimits} \newcommand{\tr}{\mathop{\rm tr}\nolimits} \newcommand{\codim}{\mathop{\rm codim}\nolimits} \newcommand{\ind}{\mathop{\rm index}\nolimits} \newcommand{\rad}{\mathop{\rm rad}\nolimits} \newcommand{\Rep}{\mathop{\rm Rep}\nolimits} \newcommand{\Lie}{\mathop{\rm Lie}\nolimits} \newcommand{\Der}{\mathop{\rm Der}\nolimits} \newcommand{\hgt}{\mathop{\rm ht}\nolimits} \newcommand{\Ider}{\mathop{\rm Ider}\nolimits} \newcommand{\id}{\mathop{\rm id}\nolimits} \)

PONTRYAGIN CONSTRUCTION

ISHAN LEVY

Date: 10/27/17.

1. Introduction

The Pontryagin construction is a way of relating framed submanifolds to homotopy classes of maps to a sphere. Here a framed submanifold is a submanifold with a trivialization of the normal frame bundle. Now we don’t want to consider all framed submanifolds, but rather mod out by an equivalence relation called cobordism. We say that \(N,N' \subset M\) are cobordant manifolds if \(N\times [0,\ee ] \cup N' \times [1-\ee ,1]\) can be extended in the interval \(M\times [\ee ,1-\ee ]\) to a submanifold of \(M\times [0,1]\) with boundary \(N \cup N'\). In particular we would like to consider framed submanifolds up to framed cobordism, where we require the extension to be framed. I will use \(\simeq \) to denote homotopic maps and \(\sim \) to denote framed cobordant submanifolds.

Throughout, we will assume that \(M\) is compact, \(f: M \to S^p\) (\(S^p\) oriented) a smooth map, \(y\) a regular value, we naturally get a framed submanifold by looking at \(N_f=f^{-1}(y)\), and \(f_{|N_f}\) induces a bundle map on \(N_f\)’s normal bundle and \(T_y\), trivializing it using a positively oriented basis of \(T_yS^p\).

We would like to prove:

Theorem 1.1. \(N_f\) is well defined up to framed cobordism class, and only depends on the homotopy class of \(f\). Moreover, \(f \mapsto N_f\) gives a bijection between framed compact cobordism classes of codimension \(p\) and \([M,S^p]\).

2. Well defined

We will begin by showing the first statement. First note that the cobordism class doesn’t depend on the basis we chose for \(f\), only the orientation, since \(\GL _n(\RR )^+\) is connected (This can be proven by using row/column operations carefully or using Graham-Schmidt to reduce to showing \(\SOr (n)\) is connected, which is done by using induction and the fibration \(\SOr (n-1)\hookrightarrow \SOr (n) \to S^{n-1}\)). Then given two choices of frames on \(N_f\), they are pullbacks of two different elements of the tangent frame bundle of \(y\), so by choosing a smooth path on \(\GL _n(\RR )^+\) that is constant on \([0,\ee ]\cup [1-\ee ,1]\), we have framed \(y \times [0,1]\) in \(S^p \times [0,1]\), and by considering the natural map induced by \(f\) from \(M\times [0,1] \to S^p \times [0,1]\), this framing of \(y \times [0,1]\) induces a cobordism between the two frames of \(N_f\). Thus we will ignore the particular frame chosen at \(y\) from now on.

We would like to show the cobordism class is well defined up to homotopy. Given a homotopy, we would like to take the preimage of \(y\) on the homotopy to get a cobordism. Unfortunately \(y\) is not necessarily a regular value of the homotopy. To fix this, the following lemma:

Lemma 2.1. The cobordism class of \(f^{-1}(z)\) is constant for \(z\) in a neighborhood of \(y\).

Proof. The set of critical points is compact as \(M\) is, hence there is a convex neighborhood of \(y\) consisting of regular values. Now choosing a family \(r_t\) of smooth rotations of the sphere that takes \(y\) to \(z\), and is constant on \([0,\ee ]\cup [1-\ee ,1]\). Then consider the map \(r \circ f:M \times [0,1]\to S^p\times [0,1] \to S^p\). \(y\) is regular for \(r \circ f\), so we get a cobordism between \(f^{-1}(y)\) and \(f^{-1}(z)\).

Theorem 2.2. The cobordism class is well defined, and is only dependant on homotopy class.

Proof. First note that if \(f \simeq g\), then we can assume the homotopy is constant on \([0,\ee ]\cup [1-\ee ,1]\), and choose \(z\) a regular value of the homotopy satisfying the conditions of the previous lemma for \(f\) and \(g\) so that \(f^{-1}(y) \sim f^{-1}(z) \sim g^{-1}(z)\sim g^{-1}(y)\). Now if \(z\) is another regular value, and \(r\) a rotation sending \(z\) to \(y\), \(r\circ f \simeq f\) so \(f^{-1}(y)\sim (r\circ f)^{-1}(y) = f^{-1}(z)\).

3. Surjectivity

We would now like to show that for any framed submanifold \(N\), we can produce a map \(f\) with \(N_f \sim N\).

Lemma 3.1 (Tubular Neighborhood Theorem). Let \(P\subset M\) be submanifold of codimension \(p\), with \(P\) compact. Then there is a neighborhood of \(P\) diffeomorphic to the normal bundle of \(P\), with \(P\) as the \(0\)-section.

Proof. By exponentiating the normal bundle, we get a local diffeomorphism \(P\times B_\ee \to M\), and since \(B_\ee \) is diffeomorphic to \(\RR ^p\), it suffices to show that for small \(\ee \), this is injective. However, if \((p_i,x_i)\), \((q_i,y_i)\) are a sequence of points for which it is not injective with the magnitude of the \(x_i,y_i\) going to \(0\), by compactness of \(P\times \overline B_{\frac{\ee }{2}}\), we can extract a convergent subsequence, which contradicts local injectivity.

This Lemma holds for non-compact submanifolds but the proof is a bit more annoying.

Theorem 3.2. The map \(f \to N_f\) is surjective.

Proof. We consider a tubular neighborhood of a framed submanifold \(N\), giving a map \(f:\RR ^p\times N \to \RR ^p\). Now consider \(S^p = y_0 \cup \RR ^p\), and smoothly extend \(f\) to \(M\) by setting all other values to \(y_0\). Then \(f^{-1}(0) = N\).

4. Injectivity

We would now like to show that if we have a cobordism \(f^{-1}\sim g^{-1}\) via some framed submanifold \(P \subset M\times [0,1]\), \(f \simeq g\). To do this, given the cobordism, we would like to use the proof of surjectivity on the cobordism to yield a homotopy. However, this still leaves us to prove:

Lemma 4.1. If \(f^{-1}(y)=g^{-1}(y)=N\), \(f \simeq g\).

Proof. If \(f,g\) agree on a neighborhood of \(N\), then removing the neighborhood, we get a map to \(\RR ^p\) instead of \(S^p\), which we can linearly homotopy without spoiling the overall smoothness. So it suffices to deform \(f\) to agree with \(g\) in a neighborhood of \(N\). To do this, choose a tubular neighborhood \(N \times \RR ^p\) that misses the antipode \(y_0\) of \(y\). Then we have maps \(F,G:N\times \RR ^p \to \RR ^p\) with \(DF_{|N\times 0} = DG_{|N\times 0}\), and we can assume that \(DF_{|N\times 0}\) is the identity on each \(n\times \RR ^p\). We would like to linearly deform \(f\) to match \(g\), but we would like to avoid adding new zeroes. To do this, note by compactness of \(N\), there is an \(\delta \) ball around \(0\) such that when \(F,G\) are restricted to it, \(\Vert DF-I\Vert ,\Vert DG-I \Vert <\ee \). Then \(\Vert F(n,x)-x\Vert \leq \Vert c x^2\Vert \) for small \(\Vert x\Vert \) by Taylor’s theorem, so by multiplying by \(\Vert x\Vert \) on either side and using Cauchy Schwarz, we get \(|F(n,x)\cdot x|\geq \Vert x\Vert ^2-c\Vert x\Vert ^3\) which is positive when \(\Vert x\Vert \) and \(c\) are small. Then doing the same with \(G\), we find that \(F\) and \(G\) lie in the same half plane for small \(\Vert x\Vert \), so that we can linearly deform \(F\) to match \(G\) locally without adding new \(0\)s.

Theorem 4.2. If \(N_f \sim N_g\), \(f \simeq g\).

Proof. As in the proof of surjectivity, choose a tubular neighborhood of a cobordism and construct a homotopy \(H\) such that \(H^{-1}(y)\) is the cobordism. Now by the previous lemma, \(f\simeq H_0 \simeq H_1\simeq g\).

5. Applications

The Pontryagin construction can be viewed as a generalization of degree theory, and we can see that the most trivial case of it does coincide with degree theory.

Theorem 5.1 (Theorem of Hopf). If \(M^n\) is compact, orientable, and connected, then \([M^n,S^n] \cong \ZZ \), where the isomorphism is given by degree. If \(M^n\) is non-orientable, then \([M^n,S^n] \cong \ZZ /2\ZZ \) with the isomorphism given by degree mod \(2\). In particular, \(\pi _n(S^n) \cong \ZZ \).

Proof. The codimension \(0\) compact framed submanifolds are finite collections of points with a \(\pm 1\) orientation. Now it is clear that if \(M\) is orientable, then the cobordism class is only dependant on degree, ie. the sum of these orientations. If \(M\) is not orientable, then points with positive or negative orientation are the same up to cobordism, so degree mod \(2\) determines the cobordism class.